indicating formation of an essentially 1:2 complex $(1.00F_3NO \cdot 2.02BF_3)$. However, continuous high-vacuum pumping for 3 hr from this complex at -120° led to the recovery of an additional 0.95 mmol of BF₃, leaving an adduct of 1:1 composition $(1.00F_8NO \cdot 1.07BF_3)$. Further pumping for 3 hr at -120° produced no additional BF₃, indicating that the 1:1 composition was quite stable at this low temperature. The 1:1 complex also appeared to be stable at -78° (no detectable vapor pressure), but on warming to room temperature the material slowly dissociated completely to gaseous F_3NO and BF_3 , leaving no residue.

Reaction of F_3NO with BCl₃.—Equimolar quantities of F_3NO and BCl₃ (ca. 1 mmol each) were condensed into a glass ampoule at -196° and warmed to -78° . At -78° (considerably above the melting points of the reactants) only a white solid was observed initially, but this became yellow and partially liquefied over a period of 5 min. Upon warming to room temperature, the entire mass vaporized to 1.5 mmol of a mixture comprised (mass spectral and infrared analysis) of approximately equal amounts of NOCl, Cl₂, and BF₃; no BCl₃ remained and only a trace of F_3NO was detectable. These results suggest that the reaction proceeded according to the equation $F_3NO + BCl_3 \rightarrow [F_3NO \cdot BCl_3] \rightarrow Cl_2 + NOCl + BF_3$.

Reaction of F_3NO with HCl.—Millimolar quantities of F_3NO and HCl were essentially unchanged after several days at 25° in a Pyrex ampoule. However, the addition of BF_8 to one reaction mixture (mole ratio $F_3NO:HCl:BF_3 = 1:1:2$) resulted in rapid and extensive reaction within minutes, producing large amounts of SiF₄ (from attack on the glass vessel), Cl₂, and a white solid identified by X-ray diffraction as NOBF₄. No F₃NO remained, indicating that the major reactions were

$$F_{3}NO + 2HCl \longrightarrow NOF + Cl_{2} + 2HI$$

 $NOF + BF_3 \longrightarrow NOBF_4$

Other Reactions .--- In a number of additional studies, either no reaction occurred between F₃NO and the inorganic substrate or the reactions were sufficiently complex that complete product characterization and material balances were unobtainable and no reasonable stoichiometry could be inferred from the data. In the first category, F3NO under ambient conditions did not react with HF, FClO₃, ClF, ClF₃, ClF₅, BrF₃, BrF₅, IF₅, PF₃, PF₅, AsF₈, CO, CO2, CF3OF, SO2, SO2F2, or FSO2OOSO2F. Trifluoramine oxide was found by nmr measurement to be soluble in the liquid phases of some of these materials without visible effect on the nmr spectrum of either the FaNO or solvent. The solvent, temperature, and mole per cent of F₃NO in solution follow: ClF₅, 0°, 20%; SO₂, -30° , >20%; SO₂F₂, -78° , >20%; ClF₃, -78° , 10%; HF, -78° , 2%; IF₅, 25°, slightly soluble. The complex F3NO reactions which were observed in this study are summarized in Table I. The products listed were only those present to the extent of more than 5-10% of the reaction mass, as determined by a combination of infrared spectroscopy, mass spectrometry, and wet-chemical analyses.

Acknowledgment.—This research was supported by the Advanced Research Projects Agency, Propellant Chemistry Office, and was monitored by Army Research Missile Command, Redstone Arsenal, Huntsville, Ala., under Contract No. DA-30-069-ORD-2638.

Contribution from the Industrial Chemicals Division, Allied Chemical Corporation, Morristown, New Jersey 07960

The Chemistry of Trifluoramine Oxide. III. Lewis Acid Complexes of F_3^5NO . Structure and Reactions of the F_2NO^+ Ion

By C. A. WAMSER, W. B. FOX, B. SUKORNICK, J. R. HOLMES, B. B. STEWART, R. JUURIK, N. VANDERKOOI, AND D. GOULD

Received May 20, 1968

Complexes of F_2NO with the Lewis acids BF_3 , AsF_5 , and SbF_5 were found to exist in the ionic form $F_2NO^+A^-$, where $A^- = BF_4^-$, AsF_6^- , or SbF_6^- . Infrared spectra of the solid complexes as well as infrared, nmr, and conductivity studies of the complexes dissolved in polar fluorinated solvents confirm their ionic constitution and indicate that the F_2NO^+ cation exhibits the same planar geometry as the isoelectronic COF₂ molecule.

Introduction

Previous papers in this series have described the synthesis and characterization of the compound trifluoramine oxide, F_8NO ,¹ and cited its reactions with a variety of inorganic substrates.² The complexes of F_8NO with the Lewis acids BF_8 , AsF_5 , and SbF_5 described in the latter of these papers were investigated further in a study of their structures and potential use in the metathetical synthesis of ionic derivatives of F_8NO . Examination of the F_8NO -Lewis acid complexes by nmr and infrared spectroscopy reveals a common structural feature attributable to the previously unknown cation F_2NO^+ .

Experimental Section

The manipulation of F_3NO and other compounds in the course of this study was carried out in Monel Metal vacuum systems provided with suitable valves and fittings for connection of gas cylinders, reaction vessels, gas infrared cells, and Plaskon nmr sample tubes.³ Pressures were measured through a sensitive all-nickel pressure transmitter connected to a mercury manometer and pressure-balancing system.⁴ The all-plastic apparatus used in manipulating corrosive fluorinated solvent systems (HF, SbF₅, etc.) were developed as a part of this investigation and have been described elsewhere.³

⁽¹⁾ W. B. Fox, J. S. MacKenzie, E. R. McCarthy, J. R. Holmes, R. F. Stahl, and R. Juurik, *Inorg. Chem.*, **7**, 2064 (1968).

⁽²⁾ W. B. Fox, C. A. Wamser, R. Eibeck, D. K. Huggins, J. S. MacKenzie, and R. Juurik, *ibid.*, **8**, 1247 (1969).

⁽³⁾ C. A. Wamser and B. B. Stewart, Rev. Sci. Instr., 36, 397 (1965).

⁽⁴⁾ S. Cromer, "The Electronic Pressure Transmitter and Self-Balancing Relay," Columbia University, New York, N. Y., June 20, 1944. AEC Declassified, March 20, 1947 (MDDC).

The adducts of F_3NO with Lewis acids were formed by direct combination of the components. With the exception of the $F_3NO-SbF_5$ adduct (*vide infra*), this involved successive condensation, at -196° , of measured amounts of the components in a suitable reaction vessel, followed by warming to temperatures within the range of stability of the particular adduct. The $F_3NO \cdot BF_3$ complex forms when the condensed phases are being warmed from -196 to -78° and is stable only at temperatures below about -50° ; at higher temperatures, it dissociates into its components, the dissociation being essentially complete at room temperature. Dissociation is negligible at temperatures of -78° (well above the boiling point of either component) or below. The $F_3NO-AsF_5$ adduct, stable at 25°, could be formed as above or simply by mixing the gaseous components at room temperature.

However, in the case of the F₃NO–SbF₅ adduct, the low vapor pressure of SbF₅ and the incomplete reaction of gaseous F₃NO with liquid SbF₅ (caused by solid formation at the interfacial surface) necessitated a modification in procedure. The synthesis of pure F₃NO·SbF₅ in bulk was most conveniently effected by passing an excess of gaseous F₃NO through a solution of SbF₅ in liquid anhydrous HF at -50° . The subsequent removal of the reaction medium by volatilization under reduced pressure at room temperature left white microcrystalline F₃NO·SbF₅. The SbF₅ adduct has no detectable dissociation pressure at 25°, while F₃NO·AsF₅ at this temperature dissociates slightly (5 mm of F₃NO + 5 mm of AsF₅).

The 1:1 compositions of the F₃NO-Lewis acid adducts were confirmed by chemical analysis and/or by tensimetric measurement of reacted gases.² There is some evidence, in the F₃NO-BF₃ system, for the existence of a F₃NO·2BF₃ complex, which, unlike the 1:1 compound, is unstable at -78° .²

Solutions were formed by condensing appropriate quantities of the solvent on the complexes at -196° in Plaskon tubes, followed by gradual warming to the melting point of the solvent. Solutions were examined by nmr spectroscopy (Varian Model V-4302 spectrometer) at a variety of temperatures down to the freezing range. Fluorine-19 chemical shifts were determined by the substitution method, using CFCl₃ as reference. Certain solutions could not be prepared; thus, the high melting points of IF₅ and AsF₃ precluded the preparation of solutions of the relatively unstable complex F₃NO·BF₃ in these solvents.

Infrared spectra of the solid F₃NO complexes were obtained by a technique similar to that reported by Geichman, et al.⁵ In the cases of $F_3NO \cdot AsF_5$ and $F_3NO \cdot SbF_5$, the complexes were deposited on BaF2 or AgCl windows by combining low pressures of the gaseous components (1:1) at room temperature inside Monel Metal gas infrared cells. The F3NO·BF3 complex was formed by combining the components in a low-temperature infrared cell with an internal BaF_2 window held at -196° . In this case, a 1:1 gaseous mixture of F3NO and BF3 was discharged slowly from a Monel storage bulb into the cell and allowed to impinge on the cold BaF2 window. Infrared spectra were recorded at various intervals while the window containing the condensed solid was allowed to warm slowly from -196° . By this technique, the appearance of the gaseous dissociation products in the spectra (above -50°) could be monitored and served to provide information on the extent of dissociation as a function of temperature.

Liquid infrared spectra of *solutions* of $F_3NO \cdot AsF_5$ and $F_3NO \cdot SbF_5$ in IF₅ and BrF₅ were obtained at room temperature with the aid of a cell which could be assembled with BaF₂ or CaF₂ windows and Halon-TFE spacers and gaskets. Samples of the solutions were transferred in a drybox into the cell by injection from a Halon-TFE syringe through capillary openings in the cell gasket. No difficulties were experienced with IF₅ solutions, but the higher vapor pressure of the BrF₅ solutions caused some difficulties in introducing samples into the cell.

A few measurements of the electrolytic conductance of F_8NO , BF_8 , and combinations thereof in anhydrous HF were made at

 -78° in a Plaskon cell with small platinum electrodes. No detectable change in conductance was observed when F₈NO or BF₈ alone was dissolved in HF, but the combination of the two at the same concentrations (about 0.6 *M*) caused a considerable increase in conductance, indicating the presence of ionic species.

Results and Discussion

Nmr Characterization of F_2NO^+ .—The F¹⁹ nmr spectrum of pure F_3NO (liquid at -78°) consists of a sharply defined 1:1:1 triplet with a chemical shift (CFCl₃ reference) of -363 ppm and $J_{N-F} = 136$ Hz. The spectrum is not significantly different for solutions of F_3NO , since an average chemical shift of -362 ± 3 ppm was observed for F_3NO in the solvents HF, CFCl₃, SO₂F₂, CF₃COCF₃, CF₃CN, BrF₅, CIF₃, N₂O₄, and SO₂ over the temperature range $-78-0^\circ$.

In contrast to pure $F_{\vartheta}NO$, which tends to be more soluble in nonpolar or moderately polar solvents, the $F_{\vartheta}NO$ -Lewis acid complexes are quite soluble in certain polar solvents and give rise to the nmr spectral data summarized in Table I. The solutions in HF, IF₅, and BrF₅ were indefinitely stable, while the solutions in liquid AsF₃ showed some tendency to decompose, probably involving oxidation of As(III). Typical nmr spectra for three selected systems are shown schematically in Figure 1.

TABLE I											
F^{19}	Nmr	Spectral	Data	FOR	Solutions	\mathbf{OF}	F ₈ NO-Lewis				
			ACTD	Con	OC DX DC						

		ncn	J COMPLEXES		
Lewis acid	Solvent	°C	Resonance and chem shift (CFCl ₃ ref), ⁱ ppm	Assignment and rel area	Notes
BF_{3}	HF	78	-331 (triplet)	$F_2NO + (1)$	a
			± 154 (singlet)	BF4 ~ (2)	
AsF_{δ}	\mathbf{HF}	-20	-333 (triplet)	$F_2NO^+(1)$	b
			+60 (singlet)	$AsF_{6}^{-}(3)$	
SbF₅	HF	-20	-333 (triplet)	$F_2NO + (1)$	ь
			± 135 (singlet)	SbF6~ (3)	
AsF_5	AsF3	0	-331 (triplet)	F_2NO^+	с
SbF₅	IF5	0	-332 (triplet)	$F_2NO + (1)$	d
			+117 (singlet)	SbF6- (3)	
BF_8	BrF_{6}	-60	-321 (singlet)	$F_{2}NO + (1)$	е
			+152 (singlet)	$BF_{4}^{-}(2)$	
SbF_{5}	BrF_{5}	-20 to	-325^{f}	$F_{2}NO^{+}(1)$	h
		+25	$+122^{g}$	$Sb_2F_{11} = (5)$	

^{*a*} Also trace "free" F₃NO at -364 ppm; HF resonance (doublet) at +200 ppm. ^{*b*} HF resonance (doublet) at +200 ppm. ^{*c*} Identical spectrum for SbF₃ complex; anionic species not resolved. ^{*d*} IF₃ resonances at -50 ppm (quintet), -7 ppm (doublet). ^{*e*} Also trace "free" F₃NO at -363 ppm; BrF₅ resonances at -269 ppm (quintet), -141 ppm (doublet). ^{*f*} Singlet at lower temperatures changing toward triplet at 25° . ^{*e*} Broad singlet with some poorly defined triplet structure. ^{*h*} BrF₅ resonances at -270 ppm (quintet), -141 ppm (doublet). ^{*i*} All J_{N-F} values for F₂NO + resonances are 250 ± 3 Hz.

The nmr spectra of the solutions of the $F_{3}NO$ complexes in HF, AsF₃, and IF₅ exhibit a 4:5:4 triplet F¹⁹ resonance centered at -331 ± 3 ppm with $J_{N-F} = 250$ Hz. This represents a change in chemical shift in excess of 30 ppm to higher magnetic field and a nearly twofold increase in the N-F coupling constant on comparison with the solutions of $F_{3}NO$ itself. There is also a characteristic broadening of the individual peaks of the triplet, with the outer members appreciably broader than the central member. (BrF₅ is unique as a solvent

⁽⁵⁾ J. R. Geichman, E. A. Smith, S. S. Trond, and P. R. Ogle, *Inorg. Chem.*, 1, 661 (1962).

Figure 1.—Schematic representation of typical fluorine-19 nmr spectra of solutions of F_8NO adducts: (A) solution of $F_8NO \cdot BF_8$ in HF at -80° ; (B) solution of $F_8NO \cdot AsF_8$ in IF₅ at 0° ; (C) solution of $F_8NO \cdot BF_8$ in BrF₅ at -60° .

in that the F^{19} resonance for the dissolved complexes consists of a *singlet* at -321 ppm; F_3NO itself in this solvent, however, presents the usual 1:1:1 triplet with the same chemical shift as in other solvents.)

Evaluation of the other fluorine-containing species which are observed in the F¹⁹ nmr spectra affords compelling evidence that the solutions contain the ionic species F_2NO^+ . Thus, the spectra of solutions of $F_3NO \cdot BF_3$ in HF, of which the one shown in Figure 1 is typical, indicate three major fluorine-containing species: (a) the N-F species at -331 ppm derived from F_3NO ; (b) a species at +154 ppm (precisely the chemical shift observed for the BF_4^- ion in HF); and (c) an intense doublet centered at about +200 ppm with a splitting of about 535 Hz, corresponding to the solvent HF. In all such solutions, the areas of the -331 and +154 ppm peaks were found to be in the ratio 1:2, as required for F_2NO^+ : BF₄⁻, the values deviating less than 10% from this ratio. It would appear, therefore, that these solutions contain principally F_2NO^+ and BF_4^- in equimolar amounts. These solutions also contain a small amount of "free" F₃NO as indicated by the weak triplet signal at -364 ppm. This suggests that there is an equilibrium established among F_3NO , BF_3 , F_2NO^+ , and BF_4^- in HF solutions, which in turn may be related to the relative Lewis acidities of HF, BF_3 , and F_2NO^+ . The extensive solvolysis of BF_4^- in HF (to BF_3 and F^-)⁶ may also be a contributing factor, little or no "free" F₈NO having been observed in similar solutions of F₃NO · AsF₅ or F₃NO · SbF_5 (SbF_6^- and presumably AsF_6^- undergo negligible solvolysis in HF^6).

The F¹⁹ nmr spectra of the F₃NO complexes of AsF₅ and SbF₅ in HF, as well as the complexes in IF₅ and BrF₅, similarly indicate the presence of F₂NO⁺ and the corresponding MF_6^- anion as the principal ionic species. However, in some cases the chemical exchange of fluoride ion between solvent and anion could not be slowed sufficiently to allow full resolution of the anion resonance. In all cases where spectral resolution could be attained, the anion resonances were observed to lie close to the expected chemical shifts (+154 ppm for BF_4^- , +60 ppm for AsF_6^- , and +117 to +135 ppm for SbF_6^{-7}). Furthermore, the area of the peak attributed to F_2NO^+ was very nearly one-third that of the AsF_6^- or SbF_6^- peak.

 BrF_5 appears to be unique as a solvent for the F_3NO adducts. The nmr spectra of solutions of $F_3NO \cdot BF_3$ or $F_3NO \cdot AsF_5$ in BrF₅ indicate the presence of F_2NO^+ and the corresponding anion $(BF_4^- \text{ or } AsF_6^-)$ with the expected intensity ratios. However, the F₂NO⁺ exhibits a singlet resonance rather than the triplet observed in other media. The 10-ppm increase in the F¹⁹ shielding constant, relative to shifts observed in the other solvents, is an order of magnitude too large to be attributed to a bulk diamagnetic susceptibility effect. Moreover, the anion resonances are observed at the same positions as in the other solvents used. The increased shielding may be the result of ion pairing (BrF5 is usually considered to be a poorly ionizing solvent) or a specific solvation interaction with the cation or possibly a combination of both effects. An analogous effect has been observed in the proton resonance spectra of LiB- $(CH_3)_4$ in ether solutions, the change from a multiplet to singlet with decreasing temperature being attributed to increased quadrupolar interaction accompanying the slower rate at which equilibrium between the contact and solvent-separated ion pairs is attained.⁸ In the case of $F_3NO \cdot SbF_5$ in BrF_5 , some anion-solvent interaction appeared to exist also, as indicated by the unexpectedly high anion-to-cation intensity ratios in this system. This effect was not explored further but may result from the presence of anionic species of the type $\mathrm{Sb}_2\mathrm{F}_{11}^-$ which have been postulated on the basis of nmr data on HF-SbF₅ systems.⁹

The differences between the N-F resonances of the parent molecule F_3NO and its cationic derivative F_2NO^+ (which is isoelectronic with COF_2) are consistent with a change from an sp³-hybridized tetrahedral structure to an sp²-hybridized planar-trigonal geometry for the cation. The higher N-F coupling constant observed for F_2NO^+ may be attributed to increased s character of the N-bonding orbital in the N-F bond. The line shape of the F_2NO^+ resonance signal is consistent with a lower degree of electronic symmetry about the N atom of F_2NO^+ compared with that of F_3NO . The 4:5:4 triplet component intensities resemble that observed for the planar-trigonal molecule FNO₂.

⁽⁶⁾ A. F. Clifford and S. Kongpricha, J. Inorg. Nucl. Chem., 20, 147 (1961).

⁽⁷⁾ Unlike those of BF₄⁻ and AsF₆⁻, the chemical shift of SbF₆⁻ appears to vary considerably with the particular solvent, an effect confirmed by nmr measurements on solutions of known SbF₆⁻ sources. For solutions of KSbF₆, the following shifts were observed in the solvents noted: HF, +135 ppm; IF₅, +117 ppm; BrF₅, +122 ppm. (8) K. C. Williams and T. L. Brown, J. Am. Chem. Soc., **88**, 4134

⁽⁸⁾ K. C. Williams and T. L. Brown, J. Am. Chem. Soc., 88, 4134 (1986).

⁽⁹⁾ H. H. Hyman, L. A. Quarterman, M. Kilpatrick, and J. J. Katz, J. Phys. Chem., 65, 123 (1961); Technical Progress Report No. 7, Stanford Research Institute, Menlo Park, Calif., Jan 1-March 31, 1965.

Infrared Spectral Characterization of F_2NO^+ .—The infrared spectra of the solid complexes of F_3NO with SbF₅, AsF₅, and BF₃ are presented in Figure 2 and provide further evidence for the presence of F_2NO^+ in these compounds.

Figure 2.—Infrared spectra of solid F_3NO -Lewis acid adducts: (A) $F_3NO \cdot SbF_5$ at 25° (Ba F_2 windows); (B) $F_3NO \cdot AsF_5$ at 25° (AgCl windows); (C) $F_3NO \cdot BF_3$ at -120° (Ba F_2 internal window, NaCl external windows).

All three spectra disclose a common pattern of three absorption bands not found in the spectra of any of the components in the gaseous or condensed phases (low temperature). These bands and their probable assignments are: 1857 cm⁻¹, N–O str; 1162 cm⁻¹, N–F sym str; 905 cm⁻¹, N–F asym str.

The presence of major absorptions characteristic of AsF_6^- (700-cm⁻¹ region) and BF_4^- (1050 cm⁻¹) in the spectra of the corresponding F_3NO complexes supports the assignment of the above bands to F_2NO^+ . (The absorption in the 650-cm⁻¹ region, which should be characteristic of SbF_6^- , is just beyond the wavelength region studied and would furthermore be obscured by the BaF_2 window cutoff which begins at even shorter wavelengths.) Accordingly, these solid complexes appear to possess ionic structures of the form F_2NO^+ - BF_4^- , $F_2NO^+AsF_6^-$, and $F_2NO^+SbF_6^-$.

Since the $F_3NO \cdot AsF_5$ complex is slightly dissociated at 25°, all spectra of this solid compound at room temperature contain absorptions characteristic of the gaseous components, F_3NO and AsF_5 , as indicated by the dashed lines in Figure 2. It has been estimated from such spectra that the equilibrium dissociation pressure of $F_3NO \cdot AsF_5$ at 25° is about 10 mm, comprising 5 mm each of F_3NO and AsF_5 . In accord with the stronger Lewis acidity of SbF_5 , the $F_3NO \cdot SbF_5$ complex is negligibly dissociated at 25°, as confirmed by the absence of any detectable F_3NO or SbF_5 in the spectrum of the solid. This is further demonstrated by the fact that the spectrum of the SbF₅ complex undergoes no appreciable change on extended vacuum pumping of the infrared cell at room temperature, while the spectrum of the corresponding AsF_{δ} complex gradually vanishes by this treatment.

Spectra of the solid $F_3NO \cdot BF_3$ complex were recorded at a variety of temperatures from -196 to about -40° where dissociation was extensive. As the temperature increases above -60° , the bands attributed to F_2NO^+ and BF_4^- recede progressively, while bands characteristic of gaseous F_3NO and BF_3 develop in the spectra. The spectra of the solid complex contain additional bands believed attributable to $B_2F_7^{-,10}$ indicating the presence of some 1:2 complex (*i.e.*, $F_2NO^+B_2F_7^{-}$) as well as the 1:1 complex. The bands characteristic of $B_2F_7^-$ occur at 1220, 1099, 1053, 1020, and 833 cm^{-1,10} and absorptions close to these wavelengths have been noted in the low-temperature spectra of F_3NO-BF_3 complexes.

Infrared spectra of *solutions* of $F_2NO^+AsF_6^-$ and $F_2NO^+SbF_6^-$ in IF₅ and BrF₅ also showed the characteristic bands of the F_2NO^+ cation at 1857, 1162, and 905 cm⁻¹, thus corroborating the F^{19} nmr characterization of the species F_2NO^+ in such solutions.

It appears likely that the N—O bond strength in F_2NO^+ is comparable to that in ONF or NO itself and the bond probably possesses considerably more π character than the N—O bond in F_3NO . The N—O stretching frequency has increased to a value within the accepted range for a full N=O double bond. This is consistent with the requirement for an expected planar structure with bond angles close to 120° and approximately sp² hybridization of the nitrogen atom.

Chemical Properties of F_2NO^+ .—The F_3NO -Lewis acid complexes were found to be considerably more reactive than F_3NO itself. Most carbon-containing compounds suffer oxidative degradation (often violently), although some compounds containing carboncarbon double bonds undergo smooth fluorine addition.

 $\rm F_2NO^+$ hydrolyzes vigorously in accordance with the reaction

$F_2NO^+AsF_6^- + 2H_2O \longrightarrow 2HF + HAsF_6 + HNO_3$

Anhydrous HF solutions containing F_2NO^+ and HF_2^- as the principal ionic species were prepared by metathetical reaction of solutions of $F_2NO^+BF_4^-$ and $K^+HF_2^-$ in HF at -60° . Approximately 85% of the BF_4^- was precipitated as KBF₄ (identified by X-ray diffraction). The F^{19} nmr spectra of the filtrates confirmed the survival of the F_2NO^+ and 85% reduction in BF_4^- concentration. Such solutions were employed in some studies as convenient sources of F_2NO^+ in metathetical reactions.

Since F_2NO^+ and HF_2^- are the ions which would be expected to result if F_3NO itself could be induced to ionize in HF, attempts were made to effect such ionization. These attempts, which were all unsuccessful, included pressurizations of F_3NO-HF systems in the absence and presence of additives (traces of F^- , H_2O , Lewis acids, etc.).

A considerable effort was directed toward the synthesis of compounds containing F_2NO^+ with oxidizing anions such as ClO_4^- , ClO_3^- , NO_3^- , etc., since such compounds would be expected to be highly energetic solid oxidizers. The general approach involved metathesis as exemplified by the generalized equation

$$F_2NO^+A^- + M^+ClO_4^- \xrightarrow{solvent} F_2NO^+ClO_4^- + M^+A^-$$

where A⁻ represents a Lewis acid ligand (AsF₆⁻, SbF₆⁻, or BF₄⁻) and M⁺ represents an alkali metal or other salt form of the desired oxidizing anion (usually perchlorate as shown). Various solvent media, such as HF, IF₅, or BrF₅, were employed.

These attempts were generally unsuccessful in that no compounds of the type $F_2NO^+ClO_4^-$ could be isolated from any of the reaction mixtures. Instead, when perchlorates were involved, the reaction products were identified as $FClO_3$ and FNO_2 , possibly from decomposition of the desired compound or other interaction of the ions F_2NO^+ and ClO_4^- (*i.e.*, $F_2NO^+ + ClO_4^- \rightarrow FClO_3 + FNO_2$).

Similarly, combination of solutions containing F_2NO^+ and ClO_3^- or SO_3F^- , led to the formation of $FClO_2$ and SO_2F_2 , respectively, along with FNO_2 in both cases.

In the earlier phases of the study, the reactions were thought to proceed *via* anion solvolysis, since it has been observed in separate experiments that ClO_4^- and ClO_3^- salts, for example, would yield FClO₃ and FClO₂, respectively, upon interaction with HF, IF₅, or BrF₅ in the presence of strong Lewis acids.¹¹ However, no SO_2F_2 could be formed from SO_3F^- in this manner, nor did ClO_4^- yield any FClO₃ when treated with BF₃ in HF, yet under similar conditions SO_2F_2 was formed by the reaction of F_2NO^+ and SO_3F^- , and FClO₃ was formed by the interaction of $F_2NO^+BF_4^-$ and ClO_4^- , in HF.

Analogous reaction products were observed in attempted metathesis reactions of $N_2F^+A_3F_6^-$ with ClO_4^- and SO_3F^- in HF medium, namely, FClO₃ and SO_2F_2 , respectively, along with N_2O .¹²

Acknowledgment.—This research was supported by the Advanced Research Projects Agency, Propellant Chemistry Office, and was monitored by Army Research Missile Command, Redstone Arsenal, Huntsville, Ala., under Contract No. DA-30-069-ORD-2638.

(11) C. A. Wamser, W. B. Fox, D. Gould, and B. Sukornick, Inorg. Chem., 7, 1933 (1968).

(12) D. Moy and A. R. Young, III, J. Am. Chem. Soc., 87, 1889 (1965).

Contribution from Rocketdyne, a Division of North American Rockwell Corporation, Canoga Park, California 91304

The Difluoronitronium Cation, NF₂O⁺

BY KARL O. CHRISTE AND WALTER MAYA

Received November 4, 1968

Nitrogen oxide trifluoride forms white crystalline 1:1 adducts with the Lewis acids BF₃, AsF₅, and SbF₅. In addition to the 1:1 complex, BF₃ can form at -126° a 2:1 adduct with NF₃O. The thermal stability of these complexes decreases in the order: NF₃O·SbF₅ > NF₃O·AsF₅ > NF₃O·BF₃ > NF₃O·2BF₃. The dissociation pressure-temperature relation has been measured and thermodynamic data are calculated for the process NF₃O·BF₃(s) = NF₃O(g) + BF₃(g). Hydrolysis of NF₃O·AsF₅ results in the formation of NO₂+AsF₆⁻. Infrared and Raman measurements show that NF₃O·SbF₅, NF₃O·AsF₅, NF₃O·AsF₅, NF₃O·BF₃, and NF₃O·2BF₃ have the ionic structures NF₂O+SbF₆⁻, NF₂O+AsF₆⁻, NF₂O+BF₄⁻, and NF₂O+BF₂F₇⁻, respectively. The NF₂O+ cation (point group C_{2v}) has a structure similar to that of isoelectronic CF₂O. All fundamentals have been observed for NF₂O+.

Introduction

Several independent disclosures have been made on the synthesis, properties, and chemistry of NF_3O .¹⁻⁵ In addition, one paper⁶ dealing with the infrared spectrum and thermodynamic properties of NF_3O has been published.

- (2) D. Pilipovich (Rocketdyne), U. S. Patent 3,346,652 (1967).
- (3) W. B. Fox and J. S. MacKenzie, U. S. Patent 3,323,866 (1967).

The capability of NF₃O to form adducts with strong Lewis acids has been recognized by all three groups¹⁻⁶ investigating this compound. Thus, Fox and coworkers⁴ reported the existence of 1:1 adducts between NF₃O and AsF₅ or SbF₅. They suggested the ionic structures NF₂O⁺AsF₆⁻ and NF₂O⁺SbF₆⁻, respectively, for these adducts based on ¹⁹F nmr and incomplete infrared data. Similarly, Bartlett and coworkers⁵ reported the existence of the complex NF₃O·AsF₅. They also proposed the ionic structure NF₂O⁺AsF₆⁻ based on incomplete infrared data. Some of the chemistry of the NF₃O·BF₃ adduct has been developed in showing that this adduct can add at low temperature

⁽¹⁾ W. Maya (Rocketdyne), U. S. Patent 3,320,147 (1967).

⁽⁴⁾ W. B. Fox, J. S. MacKenzie, N. Vanderkooi, B. Sukornick, C. A. Wamser, J. R. Holmes, R. E. Eibeck, and B. B. Stewart, J. Am. Chem. Soc., 88, 2604 (1966).

⁽⁵⁾ N. Bartlett, J. Passmore, and E. J. Wells, Chem. Commun., 213 (1966).
(6) E. C. Curtis, D. Pilipovich, and W. H. Moberly, J. Chem. Phys., 46, 2904 (1967).